7 research outputs found

    Experimental Modeling of NOx and PM Generation from Combustion of Various Biodiesel Blends for Urban Transport Buses

    Get PDF
    Biodiesel has diverse sources of feedstock and the amount and composition of its emissions vary significantly depending on combustion conditions. Results of laboratory and field tests reveal that nitrogen oxides (NOx) and particulate matter (PM) emissions from biodiesel are influenced more by combustion conditions than emissions from regular diesel. Therefore, NOx and PM emissions documented through experiments and modeling studies are the primary focus of this investigation. In addition, a comprehensive analysis of the feedstock-related combustion characteristics and pollutants are investigated. Research findings verify that the oxygen contents, the degree of unsaturation, and the size of the fatty acids in biodiesel are the most important factors that determine the amounts and compositions of NOx and PM emissions

    Unprecedented reduction in air pollution and corresponding short-term premature mortality associated with COVID-19 lockdown in Delhi, India

    Get PDF
    Countries around the world introduced strict restrictions on movement and activities known as ‘lockdowns’ to restrict the spread of the novel coronavirus disease (COVID-19) from the end of 2019. A sudden improvement in air quality was observed globally as a result of these lockdowns. To provide insight into the changes in air pollution levels in response to the COVID-19 restrictions we have compared surface air quality data in Delhi during four phases of lockdown and the first phase of the restriction easing period (25 March to 30 June 2020) with data from a baseline period (2018–2019). Simultaneously, short-term exposure of PM and O attributed premature mortality were calculated to understand the health benefit of the change in air quality. Ground–level observations in Delhi showed that concentrations of PM , PM and NO dropped substantially in 2020 during the overall study period compared with the same period in previous years, with average reductions of ~49%, ~39%, and ~39%, respectively. An overall lower reduction in O of ~19% was observed for Delhi. A slight increase in O was found in Delhi’s industrial and traffic regions. The highest peak of the diurnal variation decreased substantially for all the pollutants at every phase. The decrease in PM and O concentrations in 2020, prevented 904 total premature deaths, a 60% improvement when compared to the figures for 2018–2019. The restrictions on human activities during the lockdown have reduced anthropogenic emissions and subsequently improved air quality and human health in one of the most polluted cities in the world. Implications: I am submitting herewith the manuscript entitled “Unprecedented Reduction in Air Pollution and Corresponding Short-term Premature Mortality Associated with COVID-19 Forced Confinement in Delhi, India” for potential publishing in your journal. The novelty of this research lies in: (1) we utilized ground-level air quality data in Delhi during four phases of lockdown and the first phase of unlocking period (25 March to 30 June) for 2020 as well as data from the baseline period (2018–2019) to provide an early insight into the changes in air pollution levels in response to the COVID-19 pandemic, (2) Chatarize the change of diurnal variation of the pollutants and (3) we assess the health risk due to PM and O . Results from ground-level observations in Delhi showed that concentrations of PM , PM and NO substantially dropped in 2020 during the overall study period compared to the similar period in previous years, with an average reduction of ~49%, ~39%, and ~39%, respectively. In the case of O , the overall reduction was observed as ~19% in Delhi, while a slight increase was found in industrial and traffic regions. And consequently, the highest peak of the diurnal variation decreased substantially for all the pollutants. The health impact assessment of the changes in air quality indicated that 904 short-term premature deaths (~60%) were prevented due to the decline in PM and O concentrations in the study period. The restrictions on human activities during the lockdown have reduced the anthropogenic emissions and subsequently improved air quality and human health in one of the most polluted cities in the world

    Analysis of various transport modes to evaluate personal exposure to PM2.5 pollution in Delhi

    Get PDF
    Access to detailed comparisons of the air quality variations encountered when commuting through a city offers the urban traveller more informed choice on how to minimise personal exposure to inhalable pollutants. In this study we report on an experiment designed to compare atmospheric contaminants, in this case, PM2.5 inhaled during rickshaw, bus, metro, non-air-conditioned car, air-conditioned (AC) car and walking journeys through the city of Delhi, India. The data collection was carried out using a portable TSI SidePak Aerosol Monitor AM520, during February 2018. The results demonstrate that rickshaws (266 ± 159 μg/m3) and walking (259 ± 102 μg/m3) modes were exposed to significantly higher mean PM2.5 levels, whereas AC cars (89 ± 30 μg/m3) and the metro (72 ± 11 μg/m3) had the lowest overall exposure rates. Buses (113 ± 14 μg/m3) and non-AC cars (149 ± 13 μg/m3) had average levels of exposure, but open windows and local factors caused surges in PM2.5 for both transport modes. Closed air-conditioned transport modes were shown to be the best modes for avoiding high concentrations of PM2.5, however other factors (e.g. time of the day, window open or closed in the vehicles) affected exposure levels significantly. Overall, the highest total respiratory deposition doses (RDDs) values were estimated as 84.7 ± 33.4 μg/km, 15.8 ± 9.5 μg/km and 9.7 ± 0.9 μg/km for walking, rickshaw and non-AC car transported mode of journey, respectively. Unless strong pollution control measures are taken, the high exposure to PM2.5 levels will continue causing serious short-term and long-term health concerns for the Delhi residents. Implementing integrated and intelligent transport systems and educating commuters on ways to reduce exposure levels and impacts on commuter's health are required

    Characteristics of tail pipe (Nitric oxide) and resuspended dust emissions from urban roads – A case study in Delhi city

    Get PDF
    Introduction: Personal exposure to elevated vehicle exhaust and non-exhaust emissions at urban roadside leads to carcinogenic health effects, respiratory illness and nervous system disorders. In this paper, an attempt has been made to investigate the exhaust and non-exhaust emissions emitted from selected roads in Delhi city. Methods: Based on the vehicular density per hour and speed, three categories of roads have been considered in the present study: (a) low density road (≤1000 vehicles/hour, V ≥ 10 m/s); (b) medium density road (>1000 vehicles/hour but ≤ 2000 vehicles/hour, V ≥ 7.5 m/s 2000 vehicles/hour, V < 7.5 m/s). At the selected roads, real-world exhaust emissions were measured using AVL DiTEST 1000 analyser. The silt load measurements were also carried out as per EPA AP-42 methodology at the selected roads. Results: Results indicated real-world NO exhaust emissions of 0.5 g/m3 (2.03 g/km) on high-density roads and 0.23 g/m3 (0.67 g/km) on low and medium density roads. These values were significantly higher than the Bharat Standard (BS) IV (0.25 g/km). The silt load on the different types of roads indicated 3, 25 and 44 g/m2 -day dust deposition on, low, medium and high-density road, respectively. PM2.5 and PM10 emission rates were measured using US-EPA AP-42 methodology and were found to be least at low-density roads with values of 0.54 and 2.22 g/VKT (VKT -Vehicle Kilometer Travelled) respectively, and highest for high density roads with values of 12.40 and 51.25 g/VKT respectively. Conclusion: The present study reveals that both tailpipe (exhaust) and resuspend able road dust (non-exhaust) emissions contributes significantly and deteriorates local air quality. Although there exists emission standards, but there are no enforced regulations for non-exhaust emissions (resuspension of road dust). Hence, there is need to regulate non-exhaust emissions on urban roads

    Characteristics of real-world gaseous exhaust emissions from cars in heterogeneous traffic conditions

    No full text
    In this study, researchers have explored real-world driving conditions and developed emission factors for 58 passenger cars using on-board emission measurement technique while driving on five different routes in Delhi. The measured average emission factors of CO, HC, and NO were 3.99, 0.34, and 0.54 g/km for diesel vehicles, 7.26, 0.17, and 0.62 for petrol vehicles respectively. Road, traffic, vehicle type, and driving characteristics affect the quantity of emissions released. However, speed and acceleration significantly impact emission rates increasing with the increase in speed and acceleration. Also, emissions were minimal at 40–60 kmph and −0.5–0.5 m/s . The estimated city-wide CO, HC, and NO emissions were 60.8, 4.8, and 9.72tonnes/day. These results demonstrate the importance of monitoring the real-world exhaust emissions given the substantial difference between test cycle measurements used for compliance testing of new vehicles.

    Reconciliation of energy use disparities in brick production in India

    No full text
    Abstract Energy conservation in brick production is crucial to achieving net-zero carbon emissions from the building sector, especially in countries with major expansions in the built environment. However, widely disparate energy consumption estimates impede benchmarking its importance relative to the steel and cement industries. Here we modelled Indian brick production and its regional energy consumption by combining a nationwide questionnaire survey on feedstock, process variables and practices with remote sensing data on kiln enumeration. We found a large underreporting in current official estimates of energy consumption, with actual energy consumption comparable to that in the steel and cement industries in the country. With a total estimated production of 233 ± 15 billion bricks per year, the brick industry consumes 990 ± 125 PJ yr −1 of energy, 35 ± 6 Mt yr −1 coal and 25 ± 6 Mt yr −1 biomass. The main drivers of energy consumption for brick production are the kiln technology, the production capacity and the fuel mix used. The results suggest that improving operating practices would be a first step in making brick production more energy efficient
    corecore